skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dietz, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A prevalent approach of entity-oriented systems involves retrieving relevant entities by harnessing knowledge graph embeddings. These embeddings encode entity information in the context of the knowledge graph and are static in nature. Our goal is to generate entity embeddings that capture what renders them relevant for the query. This differs from entity embeddings constructed with static resource, for example, E-BERT. Previously, ~\citet{dalton2014entity} demonstrated the benefits obtained with the Entity Context Model, a pseudo-relevance feedback approach based on entity links in relevant contexts. In this work, we reinvent the Entity Context Model (ECM) for neural graph networks and incorporate pre-trained embeddings. We introduce three entity ranking models based on fundamental principles of ECM: (1) \acl{GAN}, (2) Simple Graph Relevance Networks, and (3) Graph Relevance Networks. \acl{GAN} and Graph Relevance Networks are the graph neural variants of ECM, that employ attention mechanism and relevance information of the relevant context respectively to ascertain entity relevance. Our experiments demonstrate that our neural variants of the ECM model significantly outperform the state-of-the-art BERT-ER ~\cite{10.1145/3477495.3531944} by more than 14\% and exceeds the performance of systems that use knowledge graph embeddings by over 101\%. Notably, our findings reveal that leveraging the relevance of the relevant context is more effective at identifying relevant entities than the attention mechanism. To evaluate the efficacy of the models, we conduct experiments on two standard benchmark datasets, DBpediaV2 and TREC Complex Answer Retrieval. To aid reproducibility, our code and data are available. https://github.com/TREMA-UNH/neural-entity-context-models 
    more » « less
  2. Knowledge Graph embeddings model semantic and struc- tural knowledge of entities in the context of the Knowledge Graph. A nascent research direction has been to study the utilization of such graph embeddings for the IR-centric task of entity ranking. In this work, we replicate the GEEER study of Gerritse et al. [9] which demonstrated improvements of Wiki2Vec embeddings on entity ranking tasks on the DBpediaV2 dataset. We further extend the study by exploring additional state-of-the-art entity embeddings ERNIE [27] and E-BERT [19], and by including another test collection, TREC CAR, with queries not about person, location, and organization entities. We confirm the finding that entity embeddings are beneficial for the entity ranking task. Interestingly, we find that Wiki2Vec is competitive with ERNIE and E-BERT. Our code and data to aid reproducibility and further research is available at https://github.com/poojahoza/E3R-Replicability 
    more » « less
  3. This tutorial will provide an overview of recent advances on neuro- symbolic approaches for information retrieval. A decade ago, knowl- edge graphs and semantic annotations technology led to active research on how to best leverage symbolic knowledge. At the same time, neural methods have demonstrated to be versatile and highly effective. From a neural network perspective, the same representation approach can service document ranking or knowledge graph rea- soning. End-to-end training allows to optimize complex methods for downstream tasks. We are at the point where both the symbolic and the neural research advances are coalescing into neuro-symbolic approaches. The underlying research questions are how to best combine sym- bolic and neural approaches, what kind of symbolic/neural ap- proaches are most suitable for which use case, and how to best integrate both ideas to advance the state of the art in information retrieval. Materials are available online: https://github.com/laura-dietz/ neurosymbolic-representations-for-IR 
    more » « less
  4. Ganguly, Debasis; Gangopadhyay, Surupendu; Mitra, Mandar; Majumder, Prasenjit (Ed.)
    For most queries, the set of relevant documents spans multiple subtopics. Inspired by the neural ranking models and query-specific neural clustering models, we develop Topic-Mono-BERT which performs both tasks jointly. Based on text embeddings of BERT, our model learns a shared embedding that is optimized for both tasks. The clustering hypothesis would suggest that embeddings which place topically similar text in close proximity will also perform better on ranking tasks. Our model is trained with the Wikimarks approach to obtain training signals for relevance and subtopics on the same queries. Our task is to identify overview passages that can be used to construct a succinct answer to the query. Our empirical evaluation on two publicly available passage retrieval datasets suggests that including the clustering supervision in the ranking model leads to about 16% improvement in identifying text passages that summarize different subtopics within a query. 
    more » « less
  5. This tutorial will provide an overview of recent advances on neuro-symbolic approaches for information retrieval. A decade ago, knowledge graphs and semantic annotations technology led to active re- search on how to best leverage symbolic knowledge. At the same time, neural methods have demonstrated to be versatile and highly effective. From a neural network perspective, the same representation approach can service document ranking or knowledge graph reasoning. End-to-end training allows to optimize complex methods for downstream tasks. We are at the point where both the symbolic and the neural research advances are coalescing into neuro-symbolic approaches. The underlying research questions are how to best combine symbolic and neural ap- proaches, what kind of symbolic/neural approaches are most suitable for which use case, and how to best integrate both ideas to advance the state of the art in information retrieval. 
    more » « less